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Abstract 
In this paper, we deal with the problem of spectral 

reflectance functions estimation in the context of 

multispectral imaging. Because the reconstruction of such 

functions is an inverse problem, slight variations in input 

data completely skew the expected results. Therefore, 

stabilizing the reconstruction process is highly required. To 

do this, we propose to use wavelets as basis functions and 

we compare it to Fourier and PCA basis. We present the 

idea and compare these three methods belonging to the 

linear model. The PCA method is training-set dependent 

and confirms its robustness when applied to reflectance 

estimation of the training sets. Fourier and wavelets basis 

allow good generalization; an advantage of wavelets being 

that it avoidsboundary artifacts. The results are evaluated 

with the commonly used goodness-of-fit coefficient (GFC) 

and prove the reliability of the use of wavelets. 
 
Introduction 
Conventional color imaging defines each pixel with 3 
variables such as red, green and blue, which are necessary 
and sufficient to characterize any color. This principle, the 
three dimensionality of color, has several limitations. First, 
in a color image acquisition process, the scene is acquired 
using a given illuminant. Thus, it is impossible to estimate 
the scene color accurately under another illuminant. 
Moreover, two color samples can match under one 
illuminant and appear completely different under another 
illuminant. This phenomenon is called metamerism. 
Multispectral imaging systems remedy these problems by 
increasing the number of acquisition channels. In doing so, 
multispectral imaging provides the advantage of high 
spectral resolution over classical color imaging systems and 
the advantage of high spatial resolution over 
spectrophotometers. Furthermore, with such systems, scene 
surface reflectance recovery from the camera output 
become easier but not trivial. Thus, finding appropriate 
mathematical methods to estimate the spectral reflectance 
from the camera output is a crucial task and of great 
importance. 
 
Problem formulation 
The generally used spectral model of the acquisition chain 
in a multispectral system is illustrated in Figure 1, where 

I(λ) is the spectral radiance of the illuminant, r(λ) is the 
spectral reflectance of the surface, o(λ) is the spectral 
transmittance of the optical system, tk(λ) is the spectral 
transmittance related to the kth filter, c(λ) is the spectral 
sensitivity of the camera, and ηk represents the spectral 
noise for the kth channel, k=1…K.  
 
 

Figure 1. Synopsis of the spectral model of the acquisition process in 
a multispectral system. 
 
The camera output dk, related to the channel k for a single 
pixel of the image, is given by  
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If the noise is assumed removed by preprocessing [1], and 
assuming a linear opto-electronic transfer function, we can 
replace I(λ), c(λ), o(λ) and tk(λ) by the spectral sensitivity 
Sk(λ) of the kth channel. Then, the Equation (1) becomes: 
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By regularly sampling the spectral range to N wavelengths, 
Equation 2 can be written in matrix notations as follows: 

)()(d T
kk λλ= rS ,         (3) 

where Sk(λ)=[sk(λ1) sk(λ2)… sk(λN)]T is the vector 
containing the spectral sensitivity of the acquisition system 
related to the kth channel, r(λ)=[r(λ1) r(λ2)… r(λN)]T is the 
vector of the sampled spectral reflectances of the scene, and 
T is the transpose operator. Considering the system with all 
channels, Equation 3 can be written as: 

rSd T= ,                         (4) 
 
where d is the vector containing all dk camera outputs and S 
=[s1 s2… sK]T is the matrix containing the channels spectral 
sensitivities Sk. The final goal is to recover r(λ) from the 
camera output according to Equation 4. This is obtained by 
finding an operator Q that solves for the following 
equation: 
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Qdr = .                                                                   (5) 
 
Depending on how the operator S is determined, two 
paradigms of spectral reflectance estimation exist [2].  
• If S is obtained by a direct physical system 

characterization. The operator Q is the inverse of S. 
However, S is a not usually a square matrix, its inverse 
does not exist. Only a pseudo-inverse could be 
calculated. Thus Q=pinv(S). 

• If S is obtained indirectly by matching a set of M color 
patches (for which we know the theoretical 
reflectances) and we capture an image of these patches 
with the multispectral camera, we have then a set of 
corresponding pairs (dm , rm), for m=1,...,M, where dm 
is a vector of dimension K containing the camera 
responses and rm is a vector of dimension N 
representing the spectral reflectance of the mth patch. 
The reflectances rm are gathered in the matrix R and 
the camera outputs for the M patches are gathered in 
the matrix D. The operator Q is straightforwardly 
obtained by calculation of this matching. Any 
optimization method can fulfill this aim (neural 
networks, Least squares…). Thus, the operator Q is 
obtained like: 
QDR =  (6) 

 
involving then the inversion 

1RDQ −=  (7) 
 

A third paradigm for spectral reflectance estimation 
consists of direct interpolation of the camera outputs dk. 
Then, no knowledge about operator S is required. 
Nevertheless, rigorous conditions about filters’ shape, as 
well as well calibrated and normalized data is required for 
this kind of reconstruction. The reconstruction is performed 
by any interpolation operator (spline, etc.) 
 
The final goal is to estimate spectral reflectance functions r 
from camera outputs d. To do so, several methods 
belonging to the two first paradigms exist in literature [3-
5]. Some classical approaches use the pseudo-inverse 
calculus and the least squares. The main drawback of these 
methods is instability of solutions due to the noise 
amplification. That is why some other methods add some 
constraints on the reflectance functions to be in the range [0 
1] or seek to maximize the smoothness of the estimated 
result [6, 7]. We can also cite a learning-based method 
using a non-linear neural network [8]. 
 
Reflectance estimation in the linear model 
Utilization of a linear model to estimate reflectance from 
camera response seems to be trivial since we supposed a 
linear opto-electronic transfer function enabling us the 
matrix notation in Equations 4, 5. Moreover, the linear 
model offers an alternative to imposing smoothness on 
reflectance functions [9]. This is expressed by assuming 
that r(λ) can be approximated by a linear combination of a 
small number of basis functions [10]. Thus, a set of basis 
functions Bj (j=1…n) are defined such that each reflectance 
ri could be written as:  

j,iji aB=r ,                                                              (8) 

where ai,j is the weight of the jth basis function related to the 
ith sample. The basis functions are themselves functions of 
wavelength but free of constraints such as being positive or 

constrained to be limited to the range [0 1]. Their number n 
is chosen to conserve maximum of energy. Equation 4 can 
be written as: 

BaSd T= ,                                                             (9) 
where the columns of the NxK matrix B contain the M basis 
functions of a linear model of reflectance spectra and the 
Kx1 matrix a holds the weights that define the particular 
spectrum that we are trying to reconstruct. When gathering 
ST and B in a unique operator, the latter is a square matrix 
that could be easily inverted. We can rewrite Equation 9 as: 

dBSa 1−= )( T ,                                                     (10) 
which allows us to compute a. Afterwards we can easily 
estimate r by simple multiplication:  

Bar = .                                                                 (11) 
In this context, methods belonging to the second paradigm 
use techniques of decomposition, although implicitly. We 
can cite the method proposed [11] which  takes advantage 
of the a priori knowledge about the spectral reflectances 
that are to be imaged (pigments reflectance for paintings 
reflectance reconstruction). Methods based on linear neural 
networks are also methods taking benefits from basis 
decomposition [12]. In our paper we will achieve the 
decomposition task by experimenting with three basis 
functions: PCA, Fourier and Wavelets analysis. In the next 
sections we present the principle of these methods. 
 
PCA analysis 
Principal component analysis (PCA) is a technique 
extensively used for dimensionality reduction in a data set. 
It consists of finding an orthogonal basis composed of 
vectors called principal components. Each component is 
associated to an energy that indicates the statistical 
relevance of the vector in the data. Technically speaking, 
PCA is an orthogonal linear transformation that transforms 
the data to a new coordinate system such that the greatest 
variance by any projection of the data lies on the first 
coordinate (called the first principal component), the 
second greatest variance on the second coordinate, and so 
on. In the field of multispectral imaging, PCA has been  
largely used for data compression [13] but also in spectral 
reflectance reconstruction [14, 15].  
 
In the discrete domain, PCA corresponds to the Karhunen-
Loève transform, and could be calculated using Singular 
Value Decomposition (SVD) [14, 15]. Thus, the basis 
functions that describe a particular set of reflectances can 
be obtained. Given an MxN matrix R that contains M 
spectra each, sampled at N wavelengths, we obtain the 
following decomposition: 
P = UWVT,                                                     (13) 
where U and V are MxM and NxN matrices containing the 
eigenvectors of the matrices PPT and PTP, respectively. The 
matrix W is an MxN matrix where diagonal entries 
represent singular values of P. The columns of U may be 
used as the basis functions. If all basis functions are used to 
reconstruct a particular spectrum from the training set, this 
will yield a perfect reconstruction. However, the interest of 
using PCA is that it is possible to keep only the most 
relevant components since it is well known that typically, 
about 95% of the energy is contained in the three first 
components [14]. 
 
Fourier analysis 
To perform a Fourier analysis, we use the Fourier 
transform. This is based on the assumption that it is 

The 9th International Symposium on Multispectral Colour Science and Application 137



possible to take any periodic function of time and write it as 
equivalent to an infinite summation of cosine and sine 
waves with frequencies as integer multiples of base 
frequency f , f = 1/T, where T is the period of the function). 
We use Fourier transform implemented by the FFT (Fast 
Fourier Transform) which decomposes a signal into its 
phase and frequency components. We consider a given 
reflectance function, one decomposes this function into a 
sum of basis function written as: 

)fcos(Ab)(B ϕ+λπ+=λ 2 ,                    (14) 
where the function B is entirely determined by the value of 
its offset b, its amplitude A, its frequency f and its phase φ. 
In this way, the Fourier transform is a linear operator that 
maps functions to other functions. In a certain way, the 
Fourier transform decomposes a function into a continuous 
spectrum of its frequency components, and the inverse 
transform synthesizes a function from its spectrum of 
frequency components.  
 
Wavelets analysis 
In order to extract information not readily available from 
the time (wavelength) domain representation it is useful to 
project the function onto a set of basis functions. The basis 
functions are those building blocks and the transform 
determines how those blocks are combined to build the 
function. The Fourier transform provides tools for studying 
global function properties — properties that are constant 
throughout the function — i.e. properties that are stationary.  
In order to study local or transient function characteristics, 
Gabor [16] formulated a windowed Fourier transform 
which correlates a function with time-frequency atoms 
(STFT). But wavelets transforms often give a better signal 
representation using Multiresolution analysis. Wavelet 
analysis refers to the representation of a function in terms 
of scaled and translated copies (known as daughter 
wavelets) of a finite length or fast decaying oscillating 
waveform (known as the mother wavelet). So, a given 
reflectance spectra r could be decomposed into a wavelet 

basis )
b

a( −λΨ and  )
b

a( −λϕ , where Ψ is the wavelets 

function at the scale 0 and φ is the scaled associated 
function. b and a are respectively scale and translation 
factors. 
 
Experiments and results 
In this section, we describe three experiments to evaluate 
the spectral reflectance estimation performance for the 
three methods: PCA, Fourier and wavelets analysis. The 
data we used are sampled at 10nm intervals in the range 
[400 700] yielding for each spectrum r(λ) to a vector of 31 
values. 

 
The aim of this experiment is to derive a small number of 
basis functions from a set of spectra using the three 
methods. Then, we try to reconstruct all the set using only 
the basis we computed. To do this we used a set of 404 
natural spectra [14]. We performed decomposition using the 
three methods. We found that 95% of energy is hold by the 
six greatest vectors. Furthermore, for practical reasons that 
involve the number of Fourier and wavelets basis to be 
multiple of two, we chose to keep the eight first basis 

functions. The wavelets we used in this paper is the Haar 
family which is short support and threrefore adapted to our 
spectra (only 31 values) followed by a post-regularization. 
Figure 2 depicts the eight basis functions derived from the 
404 sample set for the three methods. 
 
Reconstruction of training set 
After deriving the basis functions for the “training” set, we 
try to reconstruct all the spectra in this set using these basis 
functions and the coefficients matrix a (Equation 10). The 
Figure 3 shows the results for the three methods in terms of 
visual comparison of reconstructed curves: 
 
We also evaluate the reflectance estimation in terms of an 
objective metric. For this purpose, we used the non 
centered correlation coefficient, largely used and known in 
the community as Goodness of Fit Coefficient (GFC) 
expressed by the formula: 
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where Rm(λj) is the value measured by the 
spectrophotometer in the wavelength λj, and Rr(λj) 
represents the reconstructed value related to the same 
wavelength. Table 1 give the full results for the 404 spectra 
in terms of mean, median, standard deviation and the 
minimal value of GFC. 
 

GFC Method 
Mean median STD Min 

PCA 0.9997 0.9999 5.1903.10-4 0.9953 
Fourier 0.9841 0.9905 0.0170 0.8799 

Wavelets 0.9952 0.9978 0.0053 0.9655 
Table 1: results, in terms of GFC, of the reconstruction of the training 

set for the three methods 
 
Generalization performance 
From the previous results, we retain PCA and Wavelets to 
test them in the task of generalization. That means we 
extract a PCA and wavelets basis functions from a set that 
we call training set and try to estimate reflectance from 
another set. In our case, we used Macbeth DC as a training 
set and Macbeth Color checker as reconstruction target. 
Figure 4 depicts some samples of the performed 
reconstruction allowing for visual comparison of the 
reconstructed curves. We also evaluate the generalization 
capabilities of these two methods in terms of GFC. Table 2 
gives the results. 
 

GFC Method 
Mean median STD Min 

PCA 0.9971 0.9990 0.0048 0.9820 
Wavelets 0.9980 0.9986 0.0021 0.9922 
Table 2: results, in terms of GFC, of the generalization capabilities for 
the methods using PCA and wavelets basis functions 
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a.  

 
b.  

 
c. 

Figure 2: The determined eight basis functions from the set of 404 
natural spectra for: a. PCA basis functions where the mean was 
subtracted, b. Fourier basis functions and c. Wavelets basis 
functions. 
 

 
a. 

 
b. 

 
c. 

Figure 3: samples of reconstructed spectra from the training set using: a. 
PCA eight basis functions, b. Fourier eight basis functions, c. Wavelets eight 
basis functions. 
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a. 

 
b. 

Figure 4: results of generalization test for: a. PCA basis functions and 
b. Wavelets basis function. 

 
Estimation from multispectral image 
The main objective in multispectral imaging is to be able to 
reconstruct full spectral reflectance curves r(λ) from a 
small number of channels K contained in the vector dk. That 
is why we perform this third experiment. We used two 
multispectral images of the Macbeth DC composed of eight 
channels representing captured each 40nm in the range 
[400 700]. The difference between the two images is the 
shape of the filters. The first image is issued from narrow-
band filters, while the second image is issued from 
medium-band filters (FWHM of 40nm). Then, in order to 
recover the full spectrum for each patch, we used the 
previously computed basis in the case of the wavelets but 
we computed a new basis for the PCA method. Figure 5 
shows results for this experiment in terms of visual 
comparison of curves. 
 
Table 3 gives the results for this experiment in terms of 
GFC when using a multispectral image issued from narrow 
band filters. 

GFC Method 
Mean median STD Min 

PCA 0.8841 0.9605 0.1898 0.2847 
Wavelets 0.9948 0.9972 0.0064 0.9710 
Table 3: results, in terms of GFC, for the reflectance estimation from 
camera outputs in the case of multispectral image from narrow-band 

filters. 
 

 
a. 

 
b. 

 
c. 

 
d. 

Figure 5: results of reflectance estimation from: a. narrow-band 
multispectral image using PCA, b. narrow-band multispectral image 

using wavelets, c. medium-band multispectral image using PCA, and 
d. medium-band multispectral image using wavelets 

 
Table 4 gives the results for this experiment in terms of 
GFC when using a multispectral image issued from 
medium band filters. 

GFC Method 
Mean median STD Min 

PCA 0.9970 0.9993 0.0081 0.9604 
Wavelets 0.9948 0.9971 0.0071 0.9665 
Table 4: results for the reflectance estimation from camera outputs in 

the case of multispectral image from medium-band filters. 
 
Discussion 
Looking to the results of the first experiment, one can 
remark that Fourier basis presents the worst performances 
and presents some artifacts on the boundaries as depicted in 
Figure 2. b. (encircled area); this even we replicate 
periodically the reflectance samples. The wavelets remedy 
to this problem thanks to multiresolution analysis and 
presents therefore good results in terms of GFC and visual 
comparison. But, the PCA presents the greatest scores for 
the task of reconstructing samples from the training set. It is 
natural since PCA derive Smooth basis for smooth data set.  
For the generalization task, the wavelets basis functions 
performs better and get the best scores in term of GFC and 
curves visual comparison even the training set and test set 
are statistically similar (Macbeth DC and Macbeth CC). We 
notice that we could use the basis functions derived from 
the first experiments in the case of wavelets. Wavelets basis 
are independent from training. The only hypothesis is that 
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the curves are smooth. 
The third experiment shows again the best performance of 
the wavelets in the task of estimating reflectances from 
multispectral output system. In the case of multispectral 
image issued from narrow-band filters, scores for the 
wavelets are largely superior. That means that PCA is not 
adapted to reconstruction for this kind of images. In the 
case of multispectral image issued from medium-band 
filters, the two methods presents quite similar results. The 
mean and median are superior for PCA but the standard 
deviation and the min are superior for Wavelets. That 
expresses the stability in the results of wavelets. 
  
Conclusion 
In this paper, we introduced a new method for spectral 
reflectance reconstruction using wavelets basis functions. 
We tested this method in three cases: reconstruction of the 
training set, generalization and the reconstruction of 
reflectance from multispectral imaging system. We 
compare this method to two other methods belonging to the 
same paradigm: Fourier and PCA. We evaluate the results 
in terms of GFC and reflectance curves comparison. The 
proposed method show good and stable performance in all 
experiments. The future work will concern designing and 
testing other types of wavelength more adapted to smooth 
reflectances.  
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